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S. Cech, C. Wilke

Institut für Software- und Multimediatechnik

TUD-FI-11-06-Sept. 2011

Technische Berichte
Technical Reports

ISSN 1430-211X

Fakultät Informatik

Technische Universität Dresden
Fakultät Informatik
D−01062 Dresden
Germany
URL: http://www.inf.tu−dresden.de/





State of the Art: Hardware Energy Management

Johannes Waltsgott, Sebastian Götz, Ronny Fritzsche,
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Abstract. The CoolSoftware project focuses on optimizing software’s
energy consumption due to energy auto-tuning at runtime. Our vision
also relies on energy management of hardware components. This report
summarizes the results of our literature analysis w.r.t. current hardware
energy management technologies. It outlines current approaches of en-
ergy management and relates them to CoolSoftware.

1 Introduction

The CoolSoftware1 project focuses on building an energy auto-tuning runtime
environment for software components [11]. Initially, a comprehensive literature
analysis covering related work was performed. This report presents a summary
of the analysis’ results in the field of hardware energy management technologies.
Further results w.r.t. energy optimization of storage systems and aspects of
software’s energy consumption can be found in [10] and [26].

This document is structured as follows: First, an introduction on basic energy
management industry standards is given in Section 2. Second, selected technolo-
gies and scientific approaches for energy management of computer systems are
presented in Section 3. Section 4 discusses the presented approaches w.r.t. their
relationship to the CoolSoftware project. Finally, Section 5 summarizes and con-
cludes this report.

2 Industry Standards for Energy Management

First, an overview of hardware energy management technologies is given. These
technologies are basic industry standards and manufacturer independent. This
section focuses on Advanced Power Management (APM) and Advanced Config-
uration and Power Interface (ACPI).

2.1 Advanced Power Management (APM)

APM is an energy management standard developed by Intel and Microsoft in
the early 1990s. It enables the operating system (OS) to access the BIOS of a
Personal Computer via an APM driver to manage its power states. Therefore,

1 http://www.cool-software.org/
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APM defines five system power states (Full On, APM Enabled, APM Standby,
APM Suspend, Off ) and some device power states (On, Power Managed, Low
Power, Off ) for APM-aware hardware devices. By calling defined power man-
agement functions, an APM driver (part of the OS) can communicate with the
BIOS querying current power states or requesting power state transitions. The
BIOS, in turn, uses power management events, which are polled by the APM
driver, to inform the OS about changes. Figure 1 depicts the APM architecture.
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Fig. 1. APM general architecture [18]

Revision 1.2 [18] of the APM specification was released in 1996. Today, APM
has been succeeded by ACPI.

2.2 Advanced Configuration and Power Interface (ACPI))

ACPI is an open industry power management specification co-developed by
Hewlett-Packard, Intel, Microsoft, Phoenix and Toshiba. The current Revision
4.0a was released in 2010 [13]. ACPI succeeds the former APM power manage-
ment standard and focuses on OS-based power management. Figure 2 depicts
the general ACPI architecture. It consists of three parts: the ACPI registers, the
ACPI BIOS and the ACPI tables. The ACPI registers are part of the system’s
hardware and allow manipulating the hardware properties. The registers’ loca-
tions are described by the ACPI System Description Tables. The ACPI BIOS
is part of the system’s firmware. It boots the system and implements common
interfaces for operations like sleep, wake, restart etc. Furthermore, it provides
the ACPI Description Tables, which contain procedures to manipulate the ACPI
registers encoded in the ACPI Machine Language (AML). The OS communicates
with the ACPI system via an OS-specific ACPI driver, which contains an AML
interpreter to call the AML procedures stored in the ACPI Tables.

For power management, ACPI relies heavily on several states which are de-
fined for single devices or the entire system. The Global System State Definitions
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Fig. 2. ACPI overall architecture [13], redrawn

differ between application software running on the system or not, the systems la-
tency to response external events, the power consumption and methods required
to return to a working state. There are four global states in ACPI, namely G0
Working, G1 Sleeping, G2/S5 Soft Off and G3 Mechanical Off. Similar states
are defined for particular devices, that are D0 Full-On, D1, D2, and D3 Off.
There exists another state D3 hot, which is alike to D3 Off, but the device re-
mains accessible by software. The specific behavior of the D1 and D2 states is
defined by each device class.

Within the global sleep state G1, ACPI defines several sleeping states (Sx ).
The most common ones are the S3 state, where the CPU is powered off and
starts from its reset vector after wake up while the memory context is preserved
by hardware, and the S5 state, where the whole system is powered down and a
memory image is saved on a nonvolatile storage to restore the system’s state on
the next boot.

For maintaining the CPUs power consumption and thermal management,
ACPI defines specific processor power states (C0 - C3 ) within the global working
state G0, where C0 is the full working state. Further states differ regarding the
time it takes to return to C0. Furthermore, in C3 the OS is responsible to ensure
the processor’s cache coherency.

In addition, for processor and device working states (C0 / D0 ), more perfor-
mance states (P0 - Pn exist, where n is device-specific). P0 represents the high-
est performance state with the possibly highest energy consumption. Moreover,
the performance and energy consumption are declining for an increasing number
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n of states. In summary, the ACPI specification defines an industry-accepted ap-
proach to shift responsibility for power management into the operation system
and is deployed widely in nearly all contemporary computer systems. At the
moment, the ACPI revision 5 is under development [14].

3 Selected Energy Management Approaches in Research
and Technology

In this section, we will focus on selected technologies and research to maintain
power consumption of computer systems. Starting with energy management at
server components level, we will cover industry technologies as well as research
focusing on CPU, memory and storage components. Finally, a brief overview of
energy management of embedded systems is given.

3.1 Energy Management at Server Components Level

CPU Power Management Technologies Current PC system processors fea-
ture flexible power management technologies. The Intel SpeedStep technology
[17], introduced with the Intel Mobile Pentium III, enables the system to adjust
processor voltage and core frequency dynamically. Firstly introduced in mobile
processors, the CPU detected whether the laptop runs on mains or on battery.
Therefore, changes to Px-states (Section 2.2) provide lower core frequencies,
which allows lower core voltage on battery operation. Besides the autonomic
mode, the speed-stepping can also be triggered by the OS (and thus, via third-
party applications) to react on context conditions regarding the current workload
or the user’s needs. Today, Intel SpeedStep technology is integrated in nearly all
current Intel processors, including mobile and desktop models.

AMD offers technologies similar to Intel SpeedStep: Cool’n’Quiet [1] for desk-
top processors, PowerNow! [2] for mobile processors and Optimized Power Man-
agement for Opteron server processors.

Besides the former mentioned industry techniques, Huang et.al. [15] focus
on processor adaptation by cache and register reconfiguration. They propose
an new positional approach for adaptation which focuses on the code position
(with the granularity of subroutines) rather than the execution time as in com-
mon temporal work. Therefore, they introduced three implementations of their
adaptation, regarding different workload environments, providing a higher ef-
ficiency than temporal schemes. The evaluation showed an average increase in
energy savings by 50 %. The concrete savings depend highly on the actual Low
Power Techniques of the used CPUs.

Winter et al. focus on thread scheduling algorithms for large heterogeneous
many-core CPUs (up to 256 cores) [27]. They performed a study on scheduling
and power management algorithms regarding performance, power, sampling, re-
quirements and runtime overhead. Furthermore, they did a formal analysis of
the respective computational complexities. Their experimental assessment of co-
ordination between many-core scheduling and power management algorithms
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showed that coordination is not necessary and complexity can be reduced. They
suggest the Parallel Hierarchical Hungarian Algorithm for thread scheduling and
the Steepest Drop algorithm for global power management which perform up to
150 times faster than former algorithms.

Although, operating systems are capable of CPU power management (cf.
ACPI, Section 2.2), heuristics for effective management of CPU power states
are still evolving. Bircher and John [6] did an analysis of indirect and direct
performance effects of different P-/C-states of AMD quad-core CPUs consider-
ing two different workloads (compute-bound / memory-bound), both with fixed
scheduling (thread fixed to a specific core) as well as normal (OS) scheduling.
As a result of the workload power characterization, the CPU(s), the memory
controller and the memory modules turned out as the largest energy consumers
having the highest variability. For memory-bound server tasks they highlighted
memory power consumption exceeding even CPU power consumption. Further-
more, they exposed slow operating system transitions from idle to active causing
performance losses, and slow active to idle transitions reducing energy efficiency.
For selected operating system and CPU parameters (timers for P-/C-states)
they proved power savings of 45 % while minimizing performance loss to less
than 10 %.

Memory Following the CPU-specific approaches, this Section focuses on energy
management for memory components in computer systems.

Schmidt and Wehn did a critical analysis of several power management strate-
gies for DRAM [24], since they differ from former SRAM models and strategies.
Their main criticism is that current approaches propose an aggressive use of
DRAM low power states, but do not model transition overhead in their power
models. The results of their analysis are proven by a hardware controlled DRAM
unit for ARM2-based systems. Finally, they proposed a new model for accurate
timing and energy simulation.

Cai and Lu periodically adjusted the size of physical memory and the timeout
value to shut down a hard disk for reducing the average power consumption [7].
As a result, they proposed the use of Pareto3 distributions for modeling the
distribution of the idle time, with parameters of distribution adjusted at runtime,
achieving power savings up to 60 %.

Li et al. [22] determined the limitations of former control algorithms for mem-
ory and disk power management, which are manual tuning of thresholds and the
lack of performance guarantees. Their contributions include two new control
algorithms with performance guarantees. The Performance-Directed Dynamic
algorithm features dynamically adjustable thresholds, but is limited to memory
management due to complexity. The Performance-Directed Static algorithm is
a simple threshold-free control algorithm. Furthermore, they introduced a hy-
brid scheme, combining both algorithms achieving double-digit percent power
savings.

2 Advanced RISC Machines.
3 A power law probability distribution.
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3.2 Energy Management at Server Level

This Section outlines articles focusing on energy management at server level or
cross-component and device-independent power management.

Li et al. accomplished the first approach to develop algorithms to jointly
control adaptations in multiple interacting hardware components, as for example:
CPU and memory [21]. Initially, they performed a separate analysis of CPU
and memory optimization algorithms, although both adaptations influence each
other. Under the assumption, that a user accepts a certain loss of performance
to save costs (such as energy), they set up the requirement for an algorithm,
which guarantees performance impact. A corresponding algorithm that assumes
a specified target slowdown and seeks to minimize total CPU and memory energy
consumption without exceeding this target was introduced and evaluated based
on CPU and memory simulation, resulting in average energy savings of 46 % for
joint adaptation.

Tolia et al. focus on energy optimization for Blade Server Closures by combin-
ing server power management with fan power management to optimize overall
energy efficiency [25]. Therefore, they contribute Zephyr, a unified power and
cooling management system. It combines distributed system design with heat
transfer theory concepts, with the subsystems modeled by mathematical func-
tions. They achieved up to 30 % lesser cooling power consumption and 29 %
energy savings for the Blade enclosure.

Bianchini and Rajamony provide basic information on principle power man-
agement techniques for servers (and some parts on battery-operated devices),
differing in local and cluster-wide techniques [4]. They identified the following
future challenges: power / energy modeling and prediction, exploiting service-level
information, energy conservation for application servers as well as the need for
further research on memory, network interfaces and cluster interconnects.

Chase et al. performed an early analysis on resource management of (inter-
net) hosting centers, with emphasis on energy [8]. The goal was to automat-
tically adapt server resources to the current load by dynamically resizing the
active server set. They suggested an economic approach, where servers ”bid” for
resources as a function of the delivered performance. A switching infrastructure
directs incoming requests to servers assigned to the services. Using an experi-
mental setup, they achieved energy reductions of 29 % for typical web workloads.

Lang et al. focus on server cluster and data-intensive workloads [20]. Their
approach is to use the fact that some servers are underutilized and could be
shut down. The arising problem is that local server data becomes unaccessible,
when the server are shut down to save energy. Thus, the use of replication to
keep data accessible is suggested. They studied the interaction between power
management, load balancing and replication strategies and propose the use of
Chained Declustering as replication strategy.

Proving that static power management strategies could lead to poor per-
formance or even unnecessary power consumption, Ren et al. presented a hi-
erarchical scheme for adapative Dynamic Power Management (DPM) under
non-stationary service requests [23]. These requests were modeled as Markov-
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modulated processes with a set of modes (refering to particular stationary re-
quests). Energy-optimal DPM policies are precalculated offline using standard
algorithms for stationary Markov decision processes.

An early analysis of power-optimized system design was performed by Benini
and de Micheli [3], accounting for software and hardware components. They iden-
tified three types of hardware components: computation units, communication
units and storage units. Furthermore, they accounted for three phases of system
design: (1) conceptualization and modeling, (2) design and implementation, and
(3) runtime management. They reviewed techniques for energy-efficient design
of hardware and software for each mentioned phase.

3.3 Embedded Systems

This section gives a brief overview about articles focusing on energy management
for embedded systems. Since embedded systems are very specific and slightly
out-of-focus in the CoolSoftware project, the outline is skimped.

Bini et al. focused on minimizing energy consumption of embedded systems
without violating time requirements [5]. They assumed that processors have dis-
crete modes with defined speed and energy consumption. Further, they modeled
tasks with a speed-scale part and a fixed time part (I/O part). This task model
and the energy model were implemented as functions. Finally, a function calcu-
lates the minimum required frequency for a task and a suitable processor mode
is selected.

Further research regarding predictive power management for mobile embed-
ded devices can be found in [16]. Cho et al. focus on power management of
embedded devices with application-specific energy cost functions [9].

4 Discussion

The following section discusses the influence of outlined related work on Cool-
Software. First, we will point out our project vision. Later, we will oppose the
related work to our approach.

The CoolSoftware project aims for an energy auto-tuning runtime environ-
ment for software components in the field of heterogeneous server infrastruc-
tures. We focus on three layers, which are hardware (system infrastructure),
software (application landscape) and user requirements [11]. Therefore, every
layer is represented by its own managers. Energy optimization is going to be
achieved by an adaptive distribution of software components upon the system
infrastructure and an intelligent management of the hardware resources in use.
In addition, user requirements regarding Quality-of-Service of applications are
considered. We model the system infrastructure as hierarchical resources, each
encapsulated by Resource Managers [12]. Resource Managers are responsible for
managing and monitoring hardware resources. They propagate and control the
energy states provided by these devices. Thereby, resources can be forced into
different energy states (e.g., trigger distinctive energy modes, or turn resources
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off and on). The energy optimization of the resources within these states is done
by the resources themselves. In the field of hardware power management, the
presented approaches reveal several points of contact for CoolSoftware.

4.1 Hardware Management at Component Level

Our approach is highly supported by the presented global industry standard for
power management ACPI (Section 2.2), which is part of the operating system
and controls hardware components according to utilization and efficiency. Fur-
thermore, we highly rely on ACPI management and industry standards such as
Intel SpeedStep Technology / AMD Cool’n’Quiet & Power!Now (cf. Section 3.1)
for the self-management of the CPUs. Other presented work on CPU energy
management will influence our project more generally, since it addresses very
specific systems and optimization strategies. For resources such as hard disks,
the resource manager can trigger different energy states with, e.g., lower rotation
speed (cf. [10]).

4.2 Global Energy Management Strategies

The outlined papers in these field of research highlighted the strong correlation
between distinctive power management strategies, such as CPU and memory
management or relations between energy and thermal management of servers.
However, the majority of those approaches focuses on specific systems (e.g.,
Blade Closures) or workloads (Internet hosting), which dispute the heteroge-
neous vision of CoolSoftware, so we will consider them in general.

4.3 Provision for User Utility

Many of the presented approaches emphasize the provision of user utility for
power management strategies, since isolated energy management can lead to
poor performance. The focus on user requirements is fundamental to CoolSoft-
ware. Therefore, we define energy efficiency as the ratio of utility and the im-
plied energy consumption for a user request. The dependencies between software
components and hardware resources to deliver a specific utility to the user are
described by our Energy Contract Language (ECL) [11] and considered by our
runtime environment to select the best system configuration for a given user re-
quest within a specific system context (currently performance and utilization).

5 Summary

In this paper the state of the art and the latest research results in the field of
hardware energy management were outlined. Many presented approaches and
standards are fundamental to CoolSoftware, but most of them focus on power
management for specific devices only, which is comprehensible since energy is
”consumed” by single devices. Nevertheless, we emphasize on a global energy
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optimization at application level as software components run on hardware re-
sources and highly influence their energy consumption. Furthermore, we consider
user requirements such as utility for our approach to energy optimization. Fi-
nally, the presented work highlights the strong urgency of improved power man-
agement for the design of future systems and applications, since energy demand
is rising faster [19].
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